Operations for Learning with Graphical
نویسنده
چکیده
This paper is a multidisciplinary review of empirical, statistical learning from a graph-ical model perspective. Well-known examples of graphical models include Bayesian networks , directed graphs representing a Markov chain, and undirected networks representing a Markov eld. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphical operations for simplifying and manipulating a problem are provided including decomposition, diierentiation, and the manipulation of probability models from the exponential family. Two standard algorithm schemas for learning are reviewed in a graphical framework: Gibbs sampling and the expectation max-imization algorithm. Using these operations and schemas, some popular algorithms can be synthesized from their graphical speciication. This includes versions of linear regression , techniques for feed-forward networks, and learning Gaussian and discrete Bayesian networks from data. The paper concludes by sketching some implications for data analysis and summarizing how some popular algorithms fall within the framework presented. The main original contributions here are the decomposition techniques and the demonstration that graphical models provide a framework for understanding and developing complex learning algorithms.
منابع مشابه
Operations for Learning with Graphical Models
This paper is a multidisciplinary review of empirical, statistical learning from a graph-ical model perspective. Well-known examples of graphical models include Bayesian networks , directed graphs representing a Markov chain, and undirected networks representing a Markov eld. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphica...
متن کاملEvaluation of Non-visual Zooming Operations on Touchscreen Devices
The limited screen real estate of touchscreen devices necessitates the use of zooming operations for accessing graphical information such as maps. While these operations are intuitive for sighted individuals, they are difficult to perform for blind and visually-impaired (BVI) people using non-visual sensing with touchscreen-based interfaces. We address this vexing design issue by investigating ...
متن کاملFast Information Value for Graphical Models
Calculations that quantify the dependencies between variables are vital to many operations with graphical models, e.g., active learning and sensitivity analysis. Previously, pairwise information gain calculation has involved a cost quadratic in network size. In this work, we show how to perform a similar computation with cost linear in network size. The loss function that allows this is of a fo...
متن کاملSoftware Implementation and Experimentation with a New Genetic Algorithm for Layout Design
This paper discusses the development of a new GA for layout design. The GA was already designed and reported. However the implementation used in the earlier work was rudimentary and cumbersome, having no suitable Graphical User Interface, GUI. This paper discusses the intricacies of the algorithm and the GA operators used in previous work. It also reports on implementation of a new GA operator ...
متن کاملSymbolic Variable Elimination for Discrete and Continuous Graphical Models
Probabilistic reasoning in the real-world often requires inference in continuous variable graphical models, yet there are few methods for exact, closed-form inference when joint distributions are non-Gaussian. To address this inferential deficit, we introduce SVE – a symbolic extension of the well-known variable elimination algorithm to perform exact inference in an expressive class of mixed di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994